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We introduce a class of growing network models that are directly applicable to epidemiology. We show how
to construct a growing network model �individual-level model� that generates the same epidemic-level out-
comes as a population-level ordinary differential equation �ODE� model. For concreteness, we analyze the
susceptible-infected �SI� ODE model of disease invasion. First, we give an illustrative example of a growing
network whose population-level variables are compatible with those of this ODE model. Second, we demon-
strate that a growing network model can be found that is equivalent to the Crump-Mode-Jagers �CMJ�
continuous-time branching process of the SI ODE model of disease invasion. We discuss the computational
advantages that our growing network model has over the CMJ branching process.
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I. INTRODUCTION

Networks arise in many natural and artificial systems. In
the social and biological sciences, networks are used to
model the contacts among individuals. It has long been rec-
ognized that networks can naturally describe the contact dy-
namics of a spreading disease; for example, SARS, HIV, and
others. Previously, branching processes have been used to
specify the transmission network at the beginning of a dis-
ease outbreak �i.e., disease invasion� �1–8�. The individuals
are represented by nodes which are directionally linked, in-
dicating who infected whom. The most accepted branching
process applied to epidemiology is known as the Crump-
Mode-Jagers �CMJ� process �2–8�. This model has been used
in the modeling of the HIV and malaria epidemics �6�. In the
past decade, a new field of network models has been devel-
oped for modeling the spread of infectious diseases. In these
models, a given contact network is coupled with a probabi-
listic transmission model: every infected node �individual�
has a given probability for infecting any of its susceptible
�i.e., noninfected� neighbors in the contact network �9–23�.
The disease invades the contact network through percolation,
and finding the percolation thresholds becomes of capital
importance in predicting the growth of an epidemic.

Many epidemiological models �24� are based on ordinary
differential equations �ODEs�. ODE epidemic models suc-
cessfully describe the observed population-level data �such
as the number of new reported cases per unit time; see e.g.,
�24–26��; however, these aggregate data are far from suffi-
cient for validating a network model. The invasion of an
epidemic is now modeled as a threshold phenomenon �i.e.,
typically a transcritical bifurcation� characterized by a stan-
dard parameter called the basic reproduction ratio �or num-
ber� R0. On general grounds, R0 is biologically defined at
disease invasion1 as follows. R0 represents the number of
secondary cases caused by an infected individual during his/
her entire infectious period �27–31�. It is understood that if

R0�1 then a disease outbreak settles to an endemic level, or
if R0�1, the disease outbreak goes extinct. R0 is a critical
parameter which is used not only to assess epidemic severity,
but also to design control strategies.2 In practice, R0 can be
estimated through contact tracing.3 In theory, several meth-
ods have been used for calculating R0 for ODE models: �i�
stability analysis �e.g., �25��, �ii� the “fraction of the host
population that is susceptible at equilibrium” �24�, and �iii�
the next generation analysis �24,27–31�. However, these
methods make further individual-level assumptions without
explicitly writing a full individual-level model �ILM�. We
argue that, in order to associate an R0 to an ODE model, an
ILM which is compatible to the ODE model must be devel-
oped; only then can the R0 of the ILM be unambiguously
calculated. In this work we develop a mathematical setup
where we can directly apply the definition of R0. Then, we
verify how R0 satisfies the presumed threshold property.

Population-level epidemic data can be described through
network models; the expected number of network nodes in
given disease states specify the epidemic state at the popula-
tion level. Measurements on epidemic networks �e.g.,
�32,33��, and increased computational power for storage and
manipulation have increased the opportunity for developing
new realistic models of the network evolution. Evidently,
these network models will have to be compatible with their
predecessors based on ODEs. In principle, there are two ma-
jor approaches to this problem. On one hand, a network
model could be built from individual-level assumptions such
that the corresponding ODE model results as a by-product of
statistics on the network �e.g., CMJ constructs �2–8��; in this

1The case of disease invasion assumes that an infected individual
encounters only susceptibles, and that there is no depletion of sus-
ceptibles.

2The larger is the value of R0 for an epidemic, the harder it is to
eradicate that epidemic. Also, an R0 formula provides control pa-
rameters and suggests public health policies to decrease R0 below
the threshold.

3Say, for example, that the end of the infectious period of an
individual is marked by hospital self-check-in. The individual com-
ing into the hospital may be interviewed for his/her recent contacts.
Then, the number of the contacts who are infected with the same
disease can be counted. By averaging over many individuals that
check themselves into the hospital, an R0 estimate can be obtained.

PHYSICAL REVIEW E 72, 046110 �2005�

1539-3755/2005/72�4�/046110�8�/$23.00 ©2005 The American Physical Society046110-1

http://dx.doi.org/10.1103/PhysRevE.72.046110


case, calculating the expected number of nodes in given dis-
ease states versus time yields a solution of the ODE model of
interest. On the other hand, a network model could be con-
strained to be compatible with a given ODE model. Here we
follow the second path and build a class of network models
that are constrained to be compatible with a chosen ODE
model. Our construct is based on the kinetic Monte Carlo
�KMC� algorithm �34,35� and sets of rules for growing a
disease transmission network; for literature on growing net-
work topology see �36–44�. We call our new constructs KMC
growing networks. As an example of an ODE which can be
assigned a class of KMC growing networks, we discuss the
susceptible-infected �SI� ODE model of disease invasion.
Every network model in its class has a choice of two rules
for growing the transmission network: an infection rule and a
removal rule. We first present our network class in a system-
atic fashion discussing the KMC algorithm. Then we present
analytical and numerical results on a particular example. Fi-
nally, we address the very important question of compatibil-
ity between the CMJ and the KMC network dynamics. We
make the following two points. First, given an ODE epi-
demic model, there is an infinite class of KMC growing net-
works that are all compatible with the ODE; the CMJ pro-
cess, if explicitly constructed, is unique. Second, for our SI
ODE model example, we show that a slightly modified KMC
growing network scheme yields identical dynamics to that of
the corresponding CMJ process. The overall purpose of this
work is to define KMC growing networks and evaluate their
versatility and modeling potential. In doing so we briefly
analyze the concept of R0; a more comprehensive analysis of
R0 will be given elsewhere �45�.

II. CLASS OF INDIVIDUAL-LEVEL MODELS

We consider the SI model at disease invasion as our para-
digm ODE model. The classic SI model is given as follows:

dS/dt = − �SI/N ,

dI/dt = �SI/N − �I , �1�

where S�t�, I�t�, and N�t�=S�t�+ I�t� are the susceptible, in-
fected, and total populations at time t, respectively. � denotes
the infectiousness of the disease, and � denotes the per
capita removal rate due to the disease. It is very important to
note that � and � are in general population-level averages,
and for a heterogeneous population they may provide a poor
description for the rates of typical individual-level processes.
At disease invasion, we assume that depletion of susceptibles
is negligible �i.e., S /N�1� and thus obtain

dI/dt = �I − �I , �2�

which is the SI ODE model at disease invasion.
A compartmental ODE model has a naturally assigned

continuous-time finite Markov chain �46,47�. The expecta-
tion values of the populations in the Markov chain compart-
ments �i.e., the mean field� in the limit of large populations

yield the ODE solution.4 The Markov chain corresponding to
the SI ODE model of disease invasion is a simple birth-death
process �47�. The KMC algorithm for integrating this Mar-
kov chain consists of the repetition of three steps that update
the number of infected individuals and time.

�1� Randomly select a process which is either the infec-
tion of an individual or the removal of an already infected
individual. A new infection occurs with rate �I and a re-
moval occurs with rate �I. The total process rate is R= ��
+��I. A process is selected with probability given by its rate
normalized by R. Therefore, an infection occurs with prob-
ability � / ��+�� and a removal with probability � / ��+��.

�2� Update the value of I as follows. If a new infection
occurs then I→ I+1, otherwise a removal occurs and I→ I
−1.

�3� Update time. Since Markov processes are memory-
less, the interevent time is exponentially distributed with av-
erage R−1. Thus, increment time by �t=−�ln U� /R where U
is a uniform random variable in �0, 1�.

In addition to the described KMC algorithm, we track
individuals in the compartments. Thus, we construct an ILM
by implementing a growing network scheme of who infected
whom. Individuals are represented by nodes in the network,
and two individuals A and B are connected by a directed link
from B to A if B has infected A. Under these circumstances,
step 2 of the above algorithm is modified as follows.

�2�� If a new infection occurs, a new node A with no prior
links to the growing network is added in the following way.
Choose a network node B in the infected compartment ac-
cording to a certain rule which we call the infection rule.
Add a directed link from B to A meaning that B has infected
A; see Fig. 1. By default, A belongs to the infected compart-
ment until it is removed. If a removal occurs, choose a net-
work node C in the infected compartment according to a
certain rule which we call the removal rule, and remove that
node from the infected compartment. The node C does re-
main connected to the network but it is not available to be
assigned new connections; see Fig. 1. The count of nodes in
the infected compartment yields the number of infected in-
dividuals I. As a consequence of the above procedure, we
have that I→ I+1 if an infection occurs, and that I→ I−1 if
a removal occurs.

This construct provides a class of ILMs fully compatible
with the SI ODE model of disease invasion since the track-
ing of individuals in step 2� does not alter the dynamics of I
in step �2� of the KMC algorithm. The infection and the
removal rules remain to be specified, and each distinct set of
rules yields a distinct ILM in this class. This is an explicit
construct of a class of ILMs which are compatible with the

4In general, compatibility between an ODE model and its corre-
sponding continuous-time Markov chain requires the limit of large
population. However, this is not the case for the SI ODE model of
disease invasion and its corresponding Markov chain. This relates
to the fact that the SI ODE model of disease invasion is linear. It
can be verified directly through moment closure approximations of
the Markov chain corresponding to Eq. �2� that the compatibility of
the SI ODE model of disease invasion and its corresponding Mar-
kov chain holds for all population sizes.
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same ODE model. Our ILM class belongs to the very broad
class of growing networks since individuals are added to a
network of who infected whom based on global or local
network rules. However, given that a newly infected indi-
vidual is connected by a single directed link to the existent
network, our network contains only trees and no loops, and it
has the network topology of branching processes. The aver-
age number of secondary infections of removed individuals
R0 is computed as the average number of outgoing links of a
removed node �i.e., a node that no longer accepts new links�.
The average number of secondary infections of actively in-
fectious individuals Q0�t� is computed as the average number
of outgoing links of a node in the infected compartment at
time t. On very general grounds, Q0�t� and R0�t� satisfy a
constraint that we discuss in Appendix A.

The SI ODE model of disease invasion that we analyze in
this work is simple, and yet illustrative. Our methods of
analysis are not restricted to this ODE model. The generali-
zation of our individual-level construct to an arbitrary com-
partmental ODE model is conceptually straightforward as
every such model has naturally assigned a Markov chain
which can be integrated by KMC methods. The correspond-
ing KMC algorithm is then modified to fully track individu-
als by growing a transmission network which is implemented
by individual-level rules. We thus believe that the ideas we
have presented here apply to a very large class of compart-
mental ODE models.

III. A KMC GROWING NETWORK EXAMPLE

We now present an example ILM with the following in-
fection and removal rules. Infection rule: An individual join-

ing the infectious pool is infected by an infectious individual
who is uniformly randomly selected. Removal rule: When a
removal occurs, a uniformly randomly selected individual
leaves the infectious pool. Our interest is in the steady state
degree distribution of the infectious nodes. We denote the
expected number of nodes in the infectious pool having Q
outgoing connections after n processes by IQ�n�. The open
circles in Fig. 2 show numerical results for IQ�n� versus Q at
large n �i.e., n=500 000�. These suggest that IQ�n� at large n
varies exponentially with Q, and that the rate of the expo-
nential variation is approximately −log10�2�. This observa-
tion can be confirmed analytically as follows.

The rate equations for the expected number of nodes with
Q�0 connections are

I0�n + 1� = I0�n� +
�

� + �
−

�

� + �

I0�n�
I�n�

−
�

� + �

I0�n�
I�n�

,

�3�

IQ�n + 1� = IQ�n� +
�

� + �

IQ−1�n�
I�n�

−
�

� + �

IQ�n�
I�n�

−
�

� + �

IQ�n�
I�n�

, �4�

where I�n� is the expected total number of nodes in the in-
fected pool after n processes. I�n� is given by

I�n� = I�0� + n
� − �

� + �
. �5�

I0�n+1� is the sum of I0�n� with the following three terms.
The first term is the probability that event �n+1� is an infec-
tion, and that the newly infected individual joins the I0�n�

FIG. 1. Structure of the KMC model with tracking of individu-
als through growing networks. Individuals are the nodes of the net-
work and two individuals A and B are connected by a directed link
from B to A if B has infected A. A is a newly infected individual
added to the transmission growing network. By the infection rule, B
is chosen to be the one who has infected A. If a removal occurs, an
individual C is chosen in the infected compartment according to the
removal rule, and then C is removed from the infected compart-
ment. The node C does remain connected in the network but it is
not available to be assigned new connections; i.e., as node D
marked by an open circle. The rates of infection and removal are
dictated by the KMC algorithm applied to the SI ODE model of
disease invasion.

FIG. 2. The unnormalized degree distributions of removed
nodes �black disks� and infectious nodes IQ�500 000� �open circles�
resulting from the ILM with purely stochastic infection and removal
rules �see Sec. III� which was run for a total of n=500 000 events.
The parameters of the computation are �=0.015 and �=0.01. The
featured variations are approximately exponential; in semilogarith-
mic scale, the graphs appear to be straight lines with the slopes
−0.296…�−log10�2� �black disks� and −0.308…�−log10�2� �open
circles�.
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category. The second term represents the probability that
event �n+1� is an infection and that the infection was caused
by an individual in the I0�n� category who will be transfered
to the I1�n� category. The last term represents the probability
that event �n+1� is a removal from the I0�n� category. Eq. �4�
contains similar terms except for the first one which repre-
sents the inflow in the IQ�n� category due to the fact that
event �n+1� is an infection due to an individual in the
IQ−1�n� category.

Denote by �Q�n� the probability that a randomly chosen
node in the infected pool after n processes has Q links. Using
I�n��Q�n�= IQ�n� and Eqs. �3� and �4�, we obtain

�0�n + 1� = �0�n�
I�n�

I�n + 1�
+

1

I�n + 1�� �

� + �
− �0�n�� ,

�6�

�Q�n + 1� = �Q�n�
I�n�

I�n + 1�
+

1

I�n + 1�

	��Q−1�n�
�

� + �
− �Q�n�� . �7�

These equations give an infinite-dimensional iterated map for
the evolution of �Q. Since 1/ I�n�→0 and I�n� / I�n+1�→1 as

n→
, �Q�n� converges to a definite value in �0, 1� as n
→
. Eq. �6� can be solved for �0�n+1� as

�0�n + 1� = �0�0��
i=0

n

ai + �	
i=0

n−1

�
j=i+1

n

aj + bn� , �8�

where

ai 

I�i�

I�i + 1�
−

1

I�i + 1�
, �9�

bi 

�

� + �

1

I�i + 1�
. �10�

The term in parentheses in the right-hand side of �8� can be
written using the Euler � function as

�	
i=0

n−1

�
j=i+1

n

aj + bn� =
�

� + �
� 1

I0 + ��n + 1�
+

�„1 + n + �I0 − 1�/�…
�1 + ����2 + n + I0/��� ��1 + n + I0/��

�„n + �I0 − 1�/�…
−

��1 + I0/��
�„�I0 − 1�/�…�� , �11�

where I0
 I�0� and �
��−�� / ��+��. Using that ��x�
�2xx−1/2exp�x� as x→
, we find that the limit of Eq. �11�
as n→
 is 1 /2. From Eq. �5� we obtain that, for large i,
ln�ai�−1/ i, and thus

�
i=0




ai = exp�	
i=0




ln ai�  exp�− 	
i=0




1/i� → 0. �12�

Therefore, from Eq. �8� and using the above results, we ob-
tain

�0�
� = 1/2. �13�

Using �Q−1�
� instead of �Q−1�n� in the iterated equation of
�Q�n� �Eq. �7�� we obtain the following recursion relation for
all �Q�
�:

�Q�
� = �1/2��Q−1�
� , �14�

and thus

�Q�
� =
1

2Q+1 . �15�

This analytic result is in agreement with the numerics pre-
sented in Fig. 2. The slope of the IQ�
� graph in log-linear

scale is −log10�2�. Using the expression for �Q�
�, it be-
comes easy to calculate the basic reproduction ratio R0. The
average number of outgoing links as t→
 is Q0
=	Q=0


 Q�Q�
�=1 and then, using Eq. �A3�, R0=1. Further-
more, since the removal rule is uniformly random, the degree
distribution of the removed nodes must be the same as that of
the infectious nodes �Q�
�. An alternate explanation for the
result that R0=1 is given in Appendix C. This R0 result is
quite intriguing when analyzed from the traditional epide-
miological perspective since we can have epidemic growth
�i.e., ����, but nevertheless R0=1 independently of � and
�. Thus, in this case, R0 does not signal epidemic growth as
anticipated in the Introduction.

IV. KMC GROWING NETWORKS VERSUS
THE CMJ PROCESS

A. The KMC network example versus the CMJ process

The CMJ process compatible to the SI ODE model of
disease invasion �2� is a continuous-time branching process
that has the following stochastic protocol for each individual
�i.e., node�. Each infectious individual is randomly assigned
a time interval for being infectious from an exponential dis-
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tribution with an average of 1 /�. The individual has infec-
tious contacts with others and s/he creates new nodes at time
intervals which are exponentially distributed with an average
of 1 /�. Using a well known theorem �48�, the CMJ process
can also be implemented as follows. Given that an individual
stays infectious for a time interval �, choose the number of
infectious contacts from a Poisson distribution with an aver-
age of �� and then choose the times of the contacts uni-
formly random in the interval �0, ��. As a result, the CMJ
process has R0

CMJ=� /� �6�. The probability of extinction of
the CMJ process is � /� when ���, and 1 when ��� �6�.
For a schematics of the CMJ process, see Fig. 3.

It is important to note that in both the CMJ algorithm and
the KMC algorithm presented in Sec. III the individual-level
probabilistic processes satisfy the Markov property. Let us
consider one individual in the CMJ process. During any in-
finitesimal time step �t the individual has a probability ��t to
infect and a probability ��t to be removed from the infec-
tious pool. These probabilities are independent of time and of
the past history of the individual. This applies to every indi-
vidual in the infectious pool and it represents a Markov prop-
erty that allows for individuals to undergo realizations of the
same stochastic scenario �for more involved arguments see
�3��. Thus, individuals are statistically identical. However, at
the collective level, the CMJ process distinguishes between
individuals according to their histories. As a consequence, an
individual that has long been infectious has a greater prob-
ability of being removed than a recently infected individual.

Let us consider the KMC growing network algorithm pre-
sented in Sec. III. During any infinitesimal time step �t the
there is a probability �I�t that an infection process occurs
and a probability �I�t that a removal process occurs. Assum-
ing that the individuals are indistinguishable in the infectious
pool, these probabilities are uniformly distributed amongst
the individuals such that they become ��t and ��t per indi-
vidual, respectively. These individual-level probabilities are

time independent and have the Markov property. Therefore,
as with the CMJ process, individuals undergo realizations of
the same stochastic scenario and thus they are statistically
identical.

The average number of seconday infections over both the
infectious and the removed pools is 1 �see Eq. �A1��. How-
ever, in the KMC algorithm presented in Sec. III the process
of choosing an individual in the infectious pool is a source of
stochasticity that is not present in the CMJ process. Thus, the
distributions of the secondary infections of the two processes
have different variances. The two processes distribute
individual-level fluctuations differently between the infec-
tious pool and the removed pool. In particular, they produce
different individual-level averages over the infectious pool
only.

B. Construction of a KMC growing network compatible
to the CMJ process

The KMC growing networks provide many ILMs which
are compatible with the SI ODE model of disease invasion
�2�. Since the dynamics of I versus the count of individual-
level processes is a biased random walk, applying the gam-
bler’s ruin theorem �47�, we obtain that the extinction prob-
ability of all the KMC processes is just the same as the
extinction probability of the CMJ process. While R0

CMJ

=� /�, a variety of R0 values are possible for KMC growing
networks �see Sec. III and Appendix A�. The class of KMC
growing networks is very broad and it is even possible to
construct a set of rules such that the resulting KMC growing
network is equivalent to the CMJ process, as we demonstrate
below.

Our KMC growing network is constructed based on the
following infection rule: an individual joining the infectious
pool is infected by an individual who is uniform randomly
selected from the infectious pool. The removal is done as
follows. Every infected individual is assigned a time interval
of being infectious which is exponentially distributed with an
average of 1 /�. At the end of this time interval, the indi-
vidual is removed from the infectious pool. Figure 4�a�
shows numerical results from implementing this growing
network algorithm. Each plot, shows the average R0 values
versus the date at which individuals joined the infectious
pool. We show three curves corresponding to three different
times of running the KMC growing network. As expected, as
the running time of the process increases, R0 converges to
the value � /�. In Fig. 4�b� we compare three graphs that
were generated for the same running time. The first graph,
plotted with dots, is created with the KMC growing network.
The second graph, plotted with open circles, is created with
the CMJ process. The third graph, shown as a solid line, is
obtained from the following theoretical consideration. Given
that individuals remain infectious for a time � that is expo-
nentially distributed with an average of 1 /� and given that
the epidemic process has run until time T� t, the average
number of secondary infections of an individual that has
been infected at time t is given by

FIG. 3. Schematics of the CMJ branching process. Two genera-
tions of a CMJ process are shown. The root is represented by a
black disk. Every vertical line segment represents the time interval
of being infectious of a certain individual �i.e., node�; these time
intervals follow a negative exponential distribution with the an av-
erage of 1 /�. The removal events are marked with dash. The time
that infections occurred are marked with open circles. The time
intervals between infections for a given individual follow a negative
exponential distribution with the an average of 1/�.
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R0�t;T� = �
0

T−t

�����e−��d� =
�

�
�1 + e��t−T����t − T� − 1�� .

�16�

As seen in Fig. 4�b�, all three histograms overlap, numeri-
cally indicating that the KMC growing network and the CMJ
process perform similarly, and that they are consistent with
the theoretical considerations.

In fact, this KMC growing network and the CMJ branch-
ing process are indeed equivalent as suggested by the numer-
ics in Fig. 4. The removal of an individual from the infec-
tious pool as implemented in the KMC process is identical to
that of the CMJ process. Although the KMC and the CMJ
processes are inherently different in treating the infection,

their expected outcomes are identical. In both the KMC and
the CMJ algorithms the individual-level protocols are inde-
pendent and statistically identical such that the transmissibil-
ity of the disease per individual is �. Generating the infection
time intervals can be done either explicitly as in the case of
the KMC algorithm or implicitly as in the case of CMJ al-
gorithm �48�. However, the KMC algorithm has practical
advantages over the CMJ algorithm. All dynamics in epide-
miology evolve over time and predictions need to be made at
a given moment of time. The CMJ algorithm is evolved node
by node, generation by generation, and individuals from the
same generation may occur at very different moments of
time; see Fig. 3. Consequently, it is not possible to guarantee
that, after evolving a finite number of generations, all the
branches of the CMJ process have been fully evolved up to a
given moment of time. In contrast, the KMC algorithm is
evolved in time, process by process, and this difficulty does
not occur.

V. DISCUSSION AND CONCLUSIONS

We find that a broad range of R0 values are compatible
with a given ODE model. Even though an ODE model may
successfully fit population-level data, obtaining R0 from the
ODE model is not possible. Since populations are typically
heterogeneous, we expect that the R0

CMJ value does not typi-
cally apply; this hypothesis could be verified as follows. Dur-
ing an outbreak epidemiologists determine who has infected
whom from tracing the contacts of infected individuals and
directly estimate R0. This estimate could then be compared
with R0

CMJ. We believe that the two different ways of obtain-
ing an R0 would disagree even though they would be com-
patible to the same population-level model. We thus con-
clude that R0

CMJ associated with the real-life epidemics of
infectious diseases such as HIV, SARS, TB, and smallpox is
not a suitable parameter for the comparison of their relative
severities. In order to justify the use of R0

CMJ for real-life
epidemiology, one would have to verify from field data the
degree of homogeneity of the populations under epidemio-
logical observation. In this work we show that an infinity of
R0 values may be compatible with an ODE model �see Secs.
II, A and �45��. Additional individual-level assumptions are
needed to construct an ILM which is compatible with the
ODE model, and such assumptions may be supported by
epidemic network data. Then, R0 can directly be calculated
from the ILM.

In this work, we have presented a class of individual-level
models based on the KMC algorithm and rules for growing a
disease transmission network. Our models have the desirable
feature that are compatible with a given ODE system. We
have presented the situation where the ODE model of inter-
est is the SI ODE model at disease invasion, and we have
discussed in detail a KMC growing network example. We
also analyzed another KMC network model which we
showed to be equivalent to the CMJ process corresponding
to the same ODE model. Given that an ODE population
model is naturally assigned a Markov chain, our methods
would easily apply to a large class of ODE models. We con-
clude that KMC growing networks are powerful tools of
great modeling potential for epidemiology.

FIG. 4. �a� The distribution of the average R0 versus the date of
infection for three successive running times of the KMC growing
network with durations T=800 �solid disks�, 1050 �diamonds�, and
1300 �triangles�. The parameters of the computation are �=0.015
and �=0.01. Each curve shows the average results over 15 000
runs. The position of each symbol in a curve represents an average
over a binning interval of approximate size 35.5. Note that with an
increasing running time of the KMC growing network, R0 ap-
proaches � /�. �b� Comparison of the average R0 versus the time of
infection. The dots represent the results of the KMC growing net-
work, the open circles are the results of the CMJ process, and the
line represents a theoretical result.
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APPENDIX A: AN R0 CONSTRAINT FOR
INDIVIDUAL-LEVEL MODELS COMPATIBLE WITH THE

SI ODE MODEL

We now discuss an R0 relation which derives from con-
straining ILMs to be compatible with the SI ODE model at
disease invasion. Under the assumption that every infection
is uniquely assigned as a secondary infection for either a
removed or an infected individual, the following relation
holds:

Ni�t� = I�t�Q0�t� + Nr�t�R0�t� , �A1�

where Nr�t�=�0
t �I�u�du is the number of removed individu-

als at time t, and Ni�t�=�0
t �I�u�du is the cumulative number

of infections that occur in the time interval �0, t�. From Eq.
�2� we find the prevalence of the infective individuals I�t�
and rewrite Eq. �A1� as

�1 − �/��I�t�
I�t� − I�0�

Q0�t� +
�

�
R0�t� = 1, �A2�

which is an equation valid for all ILMs that are compatible
with the ODE SI model of disease invasion. For large t,
we introduce the notation R0
 limt→
R0�t�, and Q0


 limt→
Q0�t� when the limits exist. We discuss two cases:
the nonepidemic and the epidemic cases.

Nonepidemic case. We refer to the situation where the
process of infection from individual to individual cannot sus-
tain itself in a susceptible population. This is captured by our
paradigm model when ���. In this case, I�t�→0 as t→
;
i.e., no epidemic occurs. In the limit t→
, R0�t� converges
to a definite value which is � /� for all ILMs.

Epidemic case. We now assume ���, and we have a
growing epidemic with I�t�→
 as t→
. As t becomes
large, Eq. �A2� takes the following asymptotic form:

�1 −
�

�
�Q0�t� +

�

�
R0�t� = 1, �A3�

where convergence of Q0�t� and R0�t� as t→
 is not guar-
anteed. From Eq. �A3�, notice that R0�t� cannot exceed � /�.

APPENDIX B: THE TIME SINCE INFECTION
DISTRIBUTION IN THE SI ODE MODEL OF DISEASE

INVASION

Here we further assume that removals of individuals in
the KMC growing network are independent of each other,
and that the removal rate per infectious individual is the
constant �. These assumptions are satisfied by the model
described in Sec. III and by the CMJ process. We denote the
number of infected individuals that have spent an interval of
time between �̃ and �̃+d�̃ in the I compartment at time t by

Ĩ�̃�t�. Then, we write an equation for Ĩ�̃�t� based on the fact
that the individuals with time since infection �̃+dt at time t
+dt are the individuals with time since infection �̃ at time t
minus those who have been removed in the dt time interval

Ĩ�̃+dt�t + dt� = Ĩ�̃�t��1 − �dt� , �B1�

which leads to

� Ĩ�̃�t�

�t
+

� Ĩ�̃�t�

� �̃
+ �Ĩ�̃�t� = 0. �B2�

The solution of Eq. �B2� must satisfy �0

Ĩ�̃d�̃= I�t�, and,

since all newly infected individuals that join the infected

compartment have �̃=0, we also must have Ĩ0�t�=�I�t�. Such

a solution of �B2� is Ĩ�̃�t�=�I�0�e��−��te−��̃. This solution is
approached asymptotically as t→
 irrespective of the initial
conditions, and leads to the time since infection distribution
given by

� = Ĩ�̃�t�/I�t� = �e−��̃. �B3�

Note that the average time since infection of the population
in the infected compartment is �−1.

APPENDIX C: ALTERNATE DERIVATION OF R0=1

An alternate explanation of the fact that R0=1 for this
ILM is as follows. The flow of newly infected individuals is
�I�t�. Thus, the flow per already infected individual is �.
Since the removed individuals are randomly sampled from
the infectious individuals, the average length of the infec-
tious period equals the time expectation of the infectious
period. The average length of the infectious period over the
infected individuals is ��̃�=�−1 �see Appendix B�, and thus
we have R0=����=1. In contrast, in the case of the CMJ
branching process, the time expectation of the infectious pe-
riod is �−1, and thus R0

CMJ=� /�.
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